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Research Article

Abstract

Prevention of non-native species introductions and establishment is essential to avoid 
adverse impacts of invasive species in marine environments. To identify potential new 
invasive species and inform non-native species management options for the northern 
Gulf of Mexico (Alabama, Mississippi, Louisiana, Texas), 138 marine species were 
risk screened for current and future climate conditions using the Aquatic Species 
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Invasiveness Screening Kit. Species were risk-ranked as low, medium, high, and very 
high risk based on separate (calibrated) thresholds for fishes, tunicates, and inverte-
brates. In the basic screening, 15 fishes, two tunicates, and 26 invertebrates were classi-
fied as high or very high risk under current climate conditions. Whereas, under future 
climate conditions, 16 fishes, three tunicates, and 33 invertebrates were classified as 
high or very high risk. Very high risk species included: California scorpionfish Scorpae-
na guttata, red scorpionfish Scorpaena scrofa, purple whelk Rapana venosa, and Santo 
Domingo false mussel Mytilopsis sallei under both current and future climates, with 
weedy scorpionfish Rhinopias frondosa, Papuan scorpionfish Scorpaenopsis papuensis, 
daggertooth pike conger Muraenesox cinereus, yellowfin scorpionfish Scorpaenopsis ne-
glecta, tassled scorpionfish Scorpaenopsis oxycephalus, brush-clawed shore crab Hemi-
grapsus takanoi, honeycomb oyster Hyotissa hyotis, carinate rock shell Indothais lacera, 
and Asian green mussel Perna viridis under climate change conditions only. This study 
provides evidence to inform trans-boundary management plans across the five Gulf of 
Mexico states to prevent, detect, and respond rapidly to new species arrivals.

Key words: Alien species, Aquatic Species Invasiveness Screening Kit (AS-ISK), biodiver-
sity, early detection, introduction vectors, risk analysis

Introduction

Impacts of invasive species are recognized as one of the major drivers of biodiver-
sity loss globally (Molnar et al. 2008; Vilà et al. 2011; IPBES 2019). Indeed, the 
Convention on Biological Diversity (CBD; https://www.cbd.int/) named invasive 
species as one of the main drivers of biodiversity loss due to impacts on habitats, 
ecosystem services, and native species, leading to a decision (15/27) specific to In-
vasive Alien Species in 2022 (Secretariat of the CBD 2022, https://www.cbd.int/
meetings/COP-15). As the rate of introduction and establishment of invasive spe-
cies has been increasing substantially during recent centuries (Hulme et al. 2009; 
Seebens et al. 2017), the response of invasive species management schemes has 
increasingly included the development and implementation of control measures 
that attempt to reduce populations (Britton et al. 2010, 2011; Booy et al. 2017), 
diminish further spread, and mitigate harmful impacts (e.g. Coutts and Forrest 
2007; Frazer et al. 2012; Morris 2012). However, as control and eradication tech-
niques address species at the stage at which they are already established, these ap-
proaches typically incur high costs (Britton et al. 2011; Booy et al. 2017), are 
labor-intensive (Leung et al. 2002; Martins et al. 2006), can potentially decimate 
native flora and fauna populations (Coutts and Forrest 2007), and may not result 
in permanent eradication of the target species (Coutts and Forrest 2007; Parkes 
and Panetta 2009), which is particularly true for the marine environment where 
eradication is rarely an option (Sambrook et al. 2014; Lehtiniemi et al. 2015).

Therefore, invasive species management and associated conservation efforts are 
shifting from reactionary to preventative approaches (Sutherland and Woodroof 
2009; Sutherland et al. 2018), and thus rely on non-native species risk analy-
sis, which consists of risk identification (=risk screening), full risk assessment, 
and risk management and risk communication (Copp et al. 2005a; Baker et al. 
2008). As such, interest in risk screening to predict potential future invaders is 
increasing (Kolar and Lodge 2001; Copp et al. 2005a; Sutherland and Woodroof 
2009; Vander Zanden et al. 2010) as a means with which to inform national and 
trans-boundary conservation management strategies, including early detection and 
rapid response programs. As part of an early detection strategy, horizon-scanning 
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with a risk screening tool provides a means with which to identify and prioritize 
potential future invasive species (Kolar and Lodge 2001; Copp et al. 2009; Roy et 
al. 2015, 2019a; Gallardo et al. 2016) and thereby informs decision-makers about 
the allocation of resources to counteract those non-native species identified as car-
rying a high (or even moderate) risk of invasiveness, which will then be subject to a 
follow-up risk assessment. This involves detailed examination of the likelihood and 
magnitude of risk of species introduction, establishment, dispersal, and impacts 
(Copp et al. 2005a; Baker et al. 2008; Mumford et al. 2010).

Horizon scanning involves the systematic examination of ‘horizon species’, i.e. 
non-native species not currently in the risk assessment area but likely to enter it in 
the foreseeable future due to proximity or by way of human assistance (Vilizzi et al. 
2022a). With regard to the aquatic environments, human assistance involves vari-
ous introduction vectors such as ballast-water exchanges, the ornamental aquatics 
trade, and releases of pet fish to open waters by private citizens (Semmens et al. 
2004; Copp et al. 2005c; Tidbury et al. 2021). Horizon species that are risk ranked 
as posing a high-risk of being invasive can then be prioritized for comprehensive 
(full) assessment of risks and subsequent management and risk communication 
(Copp et al. 2005a, 2016; Sutherland et al. 2011; Roy et al. 2014, 2015). The out-
comes of a horizon-scanning exercise can serve to inform future decision making, 
public awareness, and policy development as well as help direct resources to detect 
and manage species of greatest concern (Roy et al. 2015; Tsiamis et al. 2020). 
Applications of horizon-scanning procedures have been carried out at national 
(e.g. Copp et al. 2009; Roy et al. 2014; Lucy et al. 2020), regional (e.g. Dodd et 
al. 2019, 2022), multi-national (e.g. Roy et al. 2015; Gallardo et al. 2016; Clarke 
et al. 2020), and global (e.g. Vilizzi et al. 2021, 2022a) scales. The main focus of 
horizon scanning is to identify species that could potentially exert adverse impacts 
on native biodiversity (Roy et al. 2014; Lucy et al. 2020), human health (Peyton et 
al. 2019), and ecosystem services (Roy et al. 2015), as well as impacts to habitats 
and species of conservation concern (Roy et al. 2014; Lucy et al. 2020; Tsiamis 
et al. 2020). These applications have encompassed freshwater (e.g. Tarkan et al. 
2017), marine (e.g. Lyons et al. 2020a; Tsiamis et al. 2020; Tidbury et al. 2021), 
and terrestrial environments (e.g. Gordon et al. 2008; Kopecký et al. 2019), tar-
geting either individual species (e.g. Moghaddas et al. 2020; Dodd et al. 2022), or 
a broad range of species and taxonomic groups (e.g. Roy et al. 2014; Peyton et al. 
2019; Vilizzi et al. 2019, 2021).

Previous studies have recommended incorporating trans-boundary collabora-
tion initiatives into conservation and natural resources management strategies in 
order to achieve large-scale management goals such as preservation of threatened 
and endangered species (Kark et al. 2015; Mason et al. 2020), mitigation of biodi-
versity loss (Kark et al. 2015; Liu et al. 2020; Mason et al. 2020), and protection 
of sensitive habitats and ecosystems (Kark et al. 2015). Management of inva-
sive species has been identified as benefitting from trans-boundary collaboration 
because this method facilitates coordinated approaches to reduce the likelihood 
of a species introduced to one jurisdiction spreading to other neighboring areas 
(Sambrook et al. 2014; Graham et al. 2018; Roy et al. 2019a). While horizon 
scanning of existing and future non-native species has been used in Europe as part 
of non-native species management programs for over a decade (e.g. Copp et al. 
2009; Caffrey et al. 2014; Roy et al. 2014, 2015; Gallardo et al. 2016; Matthews 
et al. 2017; Piria et al. 2017; Oficialdegui et al. 2023), the use of this approach 
elsewhere, such as Asia (e.g. Li et al. 2017; Clarke et al. 2020; Wei et al. 2021) 
and in the U.S. (e.g. Kolar and Lodge 2001; Mack et al. 2002; Lawson et al. 2015; 
Goldsmit et al. 2021) has been relatively limited. Recent adoption of horizon 
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scanning in the U.S. has led to numerous ongoing state, regional, and national ef-
forts to initiate and facilitate multi-jurisdictional policy and decision-making (e.g. 
Tuckett et al. 2016; Hill et al. 2018). Recently, the importance of horizon scan-
ning in the selection of non-native species has recently been emphasized in appli-
cations of Weed Risk Assessment (WRA) type decision-support tools to identify 
high-risk species (i.e. Vilizzi et al. 2022a); however, only 45% of the 78 screening 
studies they reviewed included horizon species (5.1% horizon species only, 39.7% 
both extant and horizon species, 51.3% existing species, and 3.8% without men-
tion of species status).

In the marine environment, the spread of invasive species has been attribut-
ed largely to increased global connectivity through transport, shipping, and trade 
(Cohen and Carlton 1997; Keller et al. 2011; Seebens et al. 2013, 2017). The 
primary vectors for the rise in introductions are ballast water exchange (Carlton 
and Geller 1993; Ruiz et al. 1997; Gollasch 2008), hull fouling (Drake and Lodge 
2007), aquaculture (Molnar et al. 2008), and releases of aquarium species (Chan et 
al. 2019), such as the Indo-Pacific red lionfish Pterois volitans (Linnaeus, 1758) in 
the western Atlantic (Semmens et al. 2004). In general, the incidence of the intro-
duction and initial colonization by invasive species tends to be higher within major 
shipping ports and harbors relative to areas with fewer shipping activities (Molnar 
et al. 2008; O’Shaughnessy et al. 2020; Tidbury et al. 2016, 2021). Secondary 
spread of aquatic invasive species from these areas is then primarily via smaller 
mobile vectors, such as leisure and fishing craft (Anderson et al. 2014), movement 
by anglers (Hickley and Chare 2004; Copp et al. 2007; Smith et al. 2020), as con-
taminants of native aquatic species consignments (Copp et al. 2017), releases by 
the general public (Copp et al. 2005c, 2017), and in some cases through natural 
dispersal to neighboring ports or natural areas (Clarke Murray et al. 2012; Epstein 
and Smale 2018; Peters et al. 2019).

To achieve non-native species policy objectives, which increasingly include hori-
zon scanning (e.g. Copp et al. 2009; Roy et al. 2014, 2015, 2019a, 2019b), the 
aim of the present work was to implement a risk screening study of potential future 
non-native species to identify those likely to pose a high risk of being invasive in 
the northern Gulf of Mexico over the next decade. To this end, a large number of 
marine species were screened using a widely employed WRA-type decision-sup-
port tool based on a comprehensive and multi-tiered horizon-scan (sensu Vilizzi et 
al. 2022a) that includes initial assessments of the potential of non-native aquatic 
species to cause ecological, economic, and/or social harm under both current and 
future climate conditions. The outcomes of the screening of horizon species for 
their risks of arrival, establishment, dispersal, and impacts under current and fu-
ture climate conditions were used to identify the highest-risk species with a view to 
guide policy and management and focus conservation aims at a regional level to-
wards development of comprehensive risk and economic analyses, appropriate pre-
vention measures (e.g. regulation), and early detection and rapid response plans.

Methods

Risk assessment area

The risk assessment area consisted of the northern Gulf of Mexico, which is 
inclusive of coastal Alabama, Mississippi, Louisiana, and Texas (Fig. 1), with 
coastal and marine habitats out to the edge of the continental shelf considered. 
Notably, the Florida Gulf Coast was not included in the risk assessment area 
because horizon scanning for potentially invasive coastal and marine species has 
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already been conducted for the state of Florida (Lieurance et al. in press; Kendig 
et al. 2022).

The northern Gulf of Mexico region is a heavily perturbed system with a history 
of intense hurricanes, substantial flood events, and intensive industrial resource use. 
The northern Gulf of Mexico is one of the major petroleum-producing areas in the 
U.S. (> 1,800 oil and gas platforms) and represents one of the largest fisheries by 
volume of commercial landings in the U.S. (U.S. Department of Commerce 2019). 
Owing to the presence of large commercial fishing operations and crude oil import 
and export terminals, several of the U.S.’s major international shipping ports are 
in the northern Gulf of Mexico, including the Port of Mobile in Alabama, Port of 
Pascagoula in Mississippi, Port of New Orleans in Louisiana, and Ports of Corpus 
Christi and Houston in Texas. A combined freight tonnage of 527,536,964 passed 
through these ports in 2019 (Transport Topics 2020: www.ttnews.com/). The Port 
of Houston is the United States’ number one port for imports and exports, with 
69% of all U.S. Gulf Coast’s container traffic passing through this port (Morton 
2020). With human-induced activities linked to declines in biodiversity (Teofilova 
et al. 2012; Zeng et al. 2021) and increases in invasive species establishment and 
spread (Johnston et al. 2017), systems with impaired natural habitats such as the 
northern Gulf of Mexico may be particularly vulnerable to invasion by new spe-
cies (Stachowicz et al. 2002). Moreover, infrastructure and operations to support 
human activities in the region (e.g. international shipping) provide pathways of 

Figure 1. The risk assessment area: the northern Gulf of Mexico, which for the purpose of the present study included coastal Alabama, 
Mississippi, Louisiana, and Texas. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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introduction and spread, with an increase in frequency of these pathways equating 
to an increase in species propagule pressure and, subsequently, establishment of 
new species (Lockwood et al. 2009; Tidbury et al. 2016, 2021).

Horizon scanning

A multi-step process was used to identify potential future (i.e. horizon) non-native 
species that have a high likelihood of arriving and establishing in the northern 
Gulf of Mexico. First, an initial list of marine species (i.e. species that spend at 
least part of their lives in fully marine conditions) with physiological tolerances 
that matched the conditions of the northern Gulf of Mexico was developed us-
ing several resources, which included the Centre for Agriculture and Bioscience 
International Invasive Species Compendium Horizon Scanning tool (www.cabi.
org/HorizonScanningTool), a list of species imported into the continental United 
States from 2015 to 2019 (Law Enforcement Management Information System: 
U.S. Department of the Interior 2020), and invasive species databases such as 
the Ocean Biodiversity Information System (www.obis.org), the National Exotic 
Marine and Estuarine Species Information System (invasions.si.edu/nemesisnew/
index.html), and FishBase (www.fishbase.org) or SeaLifeBase (www.sealifebase.
org). Species on this list were then cross-checked with species in the USGS Non-
indigenous Aquatic Species database (nas.er.usgs.gov) and Gulfbase (www.gulf-
base.org) to determine whether they were already reported as established in the 
risk assessment area; if it was determined that they were already established, then 
they were removed from the list. AquaMaps (www.aquamaps.org: Kaschner et al. 
2019), which is an online tool that produces computer-generated predicted global 
distribution maps for marine species, was then consulted to determine habitat 
suitability for each species. AquaMaps uses several criteria such as water depth, 
temperature, salinity, and primary production to determine habitat suitability. If 
the risk assessment area was determined to be unsuitable habitat for a species, then 
that species was removed from the list.

The resulting list included 1,303 non-native species (see Suppl. material 1) for 
pre-screening review with respect to their suitability for risk screening (i.e. those 
whose native habitat is similar to that of the northern Gulf of Mexico and whose 
physiological tolerances could allow establishment in the northern Gulf of Mexico 
if introduced). The pre-screening review involved categorization of the 1,303 species 
by major taxonomic group, with species distributed amongst eleven assessors, each 
specializing in one or more of the taxonomic groups. Using expert judgment, the 
assessors reviewed the likelihood of these species being introduced, becoming estab-
lished, and causing ecological and/or socio-economic harm within the northern Gulf 
of Mexico over the next decade to help sub-select species for a full risk screening. 
To facilitate this pre-screening process and to ensure consistent review across taxo-
nomic groups, assessors were provided with a short series of questions that helped 
determine the potential invasiveness of a species in a short amount of time and were 
based on attributes developed by Roy et al. (2014) (see Suppl. material 2). Species 
determined to be the most likely to be invasive from reviews were retained for formal 
risk screening of their potential invasiveness in the northern Gulf of Mexico.

Risk screening

From the initial list of 1,303 non-native species, 138 species were selected in the 
pre-screening step for risk screening: 32 bony fish (out of 232; 13.8%) (hereafter 
referred to as ‘fishes’), zero elasmobranchs (253; 0%), six tunicates (20; 30%), 
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47 bivalves (61; 77%), one bryozoan (17; 5.9%), 19 cnidarians (486; 3.9%), 18 
decapods (129; 14.0%), three echinoderms (32; 9.4%), eleven gastropods (72; 
15.3%), and one stomatopod (1; 100%). These 138 species were screened by 13 
assessors in total. Specifically, 102 species were screened by a single assessor, with 
eight assessors screening subsets of those species; and 36 species screened by two 
joint assessors (resulting in a consensus assessment), with three pairs of assessors 
screening subsets of those species. Upon completion of screening, each species’ 
risk screening was subject to an independent review process in which responses, 
justification for responses, and scores were reviewed by an assessor other than the 
initial one (n = 10 reviewers), with reviews being recorded on a standardized review 
spreadsheet. Where there was disagreement in responses, the initial assessor and 
reviewer were consulted, and a consensus screening was achieved.

Risk screening was undertaken using the Aquatic Species Invasiveness Screening 
Kit (AS-ISK) v2.3.3 (Copp et al. 2016, 2021; www.cefas.co.uk/nns/tools/). This 
taxon-generic, decision-support tool, which complies with the ‘minimum stan-
dards’ for assessing non-native species (Roy et al. 2018), has also been accepted by 
policy (Florida Fish and Wildlife Conservation Commission and Florida Depart-
ment of Agriculture and Consumer Services) for the screening of marine species, 
amphibians, and aquatic reptiles for the state of Florida (J.E. Hill, personal com-
munication). The toolkit consists of 55 questions of which 49 comprise the Basic 
Risk Assessment (BRA) and six the Climate Change Assessment (CCA).

To achieve a valid screening, a standard protocol was followed: this is described 
in full in Vilizzi et al. (2022a). In brief, the assessor must provide for each question 
a response, confidence level, and justification (e.g. Copp et al. 2009; Vilizzi and 
Piria 2022), with two score outcomes (BRA and BRA+CCA). Scores < 1 suggest 
a ‘low risk’ of the species being or becoming invasive in the risk assessment area, 
whereas scores ≥ 1 indicate a ‘medium risk’ or a ‘high risk’. The distinction be-
tween medium and high risk is defined using a calibrated threshold (Thr) that 
is obtained, whenever possible (see below), by Receiver Operating Characteris-
tic (ROC) curve analysis (Vilizzi et al. 2022a, b). The discriminatory power of 
ROC analysis as defined by the Area Under the Curve (AUC) is measured as: 
0.7 ≤ AUC < 0.8 = acceptable, 0.8 ≤ AUC < 0.9 = excellent, 0.9 ≤ AUC = out-
standing (Hosmer et al. 2013). In the present study, for the fishes and invertebrates 
classified as high risk, an additional ‘very high risk’ category was also distinguished 
using an ad hoc threshold such as first applied to the screening scores from aquatic 
species by Britton et al. (2011). Identification of very high-risk species may help 
prioritize allocation of resources for comprehensive risk assessment (Copp et al. 
2005a, 2016; Vilizzi et al. 2022a).

The a priori categorization of species required for ROC curve analysis was imple-
mented as per the standard protocol (Vilizzi et al. 2022a) (Table 1). This requires at 
least 15–20 species to achieve a successful, statistically robust calibrated threshold 
score with which to distinguish between medium-risk and high-risk species; these 
species must consist of both a priori non-invasive and invasive in a ‘relatively bal-
anced’ proportion (Vilizzi et al. 2019, 2021). Unlike invertebrates, these require-
ments were not met for tunicates and fishes in the present study, so ‘generalized’ 
group-based thresholds from a global AS-ISK application (Vilizzi et al. 2021) were 
used for fishes (Thr = 12.75) and tunicates (Thr = 22.5). Implementation of ROC 
curve analysis followed the standard protocol (Vilizzi et al. 2022a), with true/false 
positive/negative outcome distinction not applied to medium-risk species because 
their further evaluation in a comprehensive risk assessment depends on policy/
management priorities and/or the availability of financial resources. Fitting of the 
ROC curve for invertebrates was with pROC (Robin et al. 2011) for R x64 v4.0.5 
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Table 1. Taxa evaluated for their potential risk of invasiveness in the northern Gulf of Mexico. For each taxon, the a priori categorization 
into Invasive and Non-invasive is provided based on a the protocol described in Vilizzi et al. (2022a): (i) Database: FishBase (www.fishbase.
org) for fishes; SeaLifeBase (www.sealifebase.org) for tunicates and invertebrates; (ii) Centre for Agriculture and Bioscience International 
Invasive Species Compendium (CABI: www.cabi.org/ISC) and Global Invasive Species Database (GISD: www.iucngisd.org); (iii) Invasive 
and Exotic Species of North America list (IESNA: www.invasive.org); (iv) Google Scholar literature search. N = no impact/threat; Y = im-
pact/threat; ‘–’ = absent; n.e. = not evaluated (but present in database); n.a. = not applicable.

A priori categorization
Taxon name Common name D’base CABI GISD IESNA Scholar Category

Fishes

Conger verreauxi southern conger eel N – – – N Non-invasive

Dendrochirus barberi Hawaiian lionfish – – – – N Non-invasive

Dendrochirus biocellatus twospot turkeyfish – – – – N Non-invasive

Dendrochirus brachypterus dwarf lionfish – – – – N Non-invasive

Dendrochirus zebra zebra turkeyfish – – – – N Non-invasive

Fundulus heteroclitus heteroclitus mummichog N – – – N Non-invasive

Heniochus diphreutes false moorish idol N – n.e. – N Non-invasive

Lythrypnus dalli bluebanded goby N – – – N Non-invasive

Muraenesox cinereus daggertooth pike conger N – – – N Non-invasive

Parapterois heterura blackfoot firefish – – – – N Non-invasive

Platax orbicularis orbicular batfish N – – N N Non-invasive

Pterois antennata broadbarred firefish – – – – N Non-invasive

Pterois cincta Red Sea lionfish N – – – N Non-invasive

Pterois lunulata luna lionfish – – – – N Non-invasive

Pterois mombasae frillkin turkeyfish N – – – N Non-invasive

Pterois radiata radial firefish – – – – N Non-invasive

Pterois russelii plaintail turkeyfish – – – – N Non-invasive

Pterois sphex Hawaiian turkeyfish – – – – N Non-invasive

Rhinopias eschmeyeri Eschmeyer’s scorpionfish N – – – N Non-invasive

Rhinopias frondosa weedy scorpionfish – – – – N Non-invasive

Scorpaena guttata California scorpionfish – – – – N Non-invasive

Scorpaena mystes Pacific spotted scorpionfish – – – – N Non-invasive

Scorpaena scrofa red scorpionfish – – – – N Non-invasive

Scorpaenodes parvipinnis lowfin scorpionfish – – – – N Non-invasive

Scorpaenopsis macrochir flasher scorpionfish – – – – N Non-invasive

Scorpaenopsis neglecta yellowfin scorpionfish – – – – N Non-invasive

Scorpaenopsis oxycephalus tassled scorpionfish – – – – N Non-invasive

Scorpaenopsis papuensis Papuan scorpionfish N – – – N Non-invasive

Scorpaenopsis vittapinna bandfin scorpionfish N – – – N Non-invasive

Sebastapistes cyanostigma yellowspotted scorpionfish – – – – N Non-invasive

Sebastapistes strongia brownbanded stingfish – – – – N Non-invasive

Semicossyphus pulcher California sheephead – – – – N Non-invasive

Tunicates

Asterocarpa humilis compass sea squirt – – – – N Non-invasive

Botrylloides violaceus purple colonial tunicate N – Y – n.a. Invasive

Clavelina lepadiformis light-bulb ascidian – – N – N Non-invasive

Corella eumyota orange-tipped sea squirt – – Y – n.a. Invasive

Didemnum vexillum carpet sea squirt – – Y Y n.a. Invasive
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A priori categorization
Taxon name Common name D’base CABI GISD IESNA Scholar Category

Trididemnum solidum overgrowing mat tunicate – Y – – n.a. Invasive

Invertebrates

Acanthaster planci crown-of-thorns – Y Y – n.a. Invasive

Acropora abrolhosensis – – – – – N Non-invasive

Acropora acuminata – – – – – N Non-invasive

Acropora grandis – – – – – N Non-invasive

Acropora longicyathus – – – – – N Non-invasive

Acropora robusta – – – – – N Non-invasive

Anadara inaequivalvis inequivalve ark – – n.e. – N Non-invasive

Anadara kagoshimensis – – – – – Y Invasive

Anadara satowi Chinese blood clam – – n.e. – N Non-invasive

Arcuatula senhousia Asian date mussel – – Y – n.a. Invasive

Argopecten noronhensis – – – – – N Non-invasive

Argopecten nucleus nucleus scallop – – – – N Non-invasive

Argopecten ventricosus Pacific calico scallop – – – – N Non-invasive

Atrina pectinata comb pen shell – – – – N Non-invasive

Bankia destructa – – – – – N Non-invasive

Bankia zeteki – – – – – N Non-invasive

Batillaria attramentaria Japanese false cerith – Y – – n.a. Invasive

Batissa violacea – – – – – N Non-invasive

Brachidontes pharaonis – – – – – Y Invasive

Calappa hepatica reef box crab – – – – N Non-invasive

Calcinus laevimanus Hawaiian hermit – – – – N Non-invasive

Camposcia retusa decorator crab – – – – N Non-invasive

Celleporaria brunnea – – – – – N Non-invasive

Cerithium columna – – – – – N Non-invasive

Chama asperella jewel boxes – – n.e. – N Non-invasive

Charybdis (Charybdis) hellerii spiny hands – Y N – n.a. Invasive

Clypeomorus bifasciata morus cerith – – – – N Non-invasive

Crassostrea brasiliana mangrove oyster – – – – N Non-invasive

Crassostrea columbiensis Columbia black oyster – – – – N Non-invasive

Crassostrea tulipa West African mangrove oyster – – – – N Non-invasive

Crepidula onyx onyx slippersnail – – n.e. – Y Invasive

Dardanus pedunculatus anemone hermit crab – – – – N Non-invasive

Dendostrea sandvichensis Hawaiian oyster – – – – N Non-invasive

Dipsastraea pallida – – – – – N Non-invasive

Enoplometopus holthuisi bullseye reef lobster – – – – N Non-invasive

Ensis leei – – – – – N Non-invasive

Favites complanata larger star coral – – – – N Non-invasive

Fragum fragum white strawberry cockle – – – – N Non-invasive

Fulvia fragilis fragile cockle – – n.e. – N Non-invasive

Gonodactylaceus falcatus Philippine mantis shrimp N – – – Y Invasive

Hemigrapsus takanoi brush-clawed shore crab – – Y – n.a. Invasive

Hiatula rosea – N – – – N Non-invasive

Hippopus hippopus bear paw clam N – – – N Non-invasive
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A priori categorization
Taxon name Common name D’base CABI GISD IESNA Scholar Category

Homophyllia australis – – – – – N Non-invasive

Hyotissa hyotis honeycomb oyster N – – – N Non-invasive

Ilyanassa obsoleta eastern mudsnail – Y – – N Invasive

Indothais lacera carinate rock shell N – – – N Non-invasive

Isopora palifera catch bowl coral – – – – N Non-invasive

Laternula gracilis – – – – – N Non-invasive

Limaria hians gaping file shell – – – – N Non-invasive

Lopha cristagalli coxcomb oyster – – n.e. – N Non-invasive

Lyrodus medilobatus – – – – – N Non-invasive

Lysmata vittata Indian lined shrimp – – – – Y Invasive

Madracis formosa eight-ray finger coral – – – – N Non-invasive

Magallana gigas Pacific oyster – – Y – n.a. Invasive

Montipora foliosa cabbage coral – – – – N Non-invasive

Mytella strigata Guyana swamp mussel N – – – Y Invasive

Mytilopsis adamsi – – – – – N Non-invasive

Mytilopsis sallei Santo Domingo false mussel – Y Y – n.a. Invasive

Mytilus californianus California mussel – – – – N Non-invasive

Mytilus edulis blue mussel – – – – N Non-invasive

Nitidotellina valtonis – N – – – N Non-invasive

Ophiothela mirabilis – – – – – Y Invasive

Palaemon carinicauda oriental prawn – – – – N Non-invasive

Panulirus regius royal spiny lobster – – – – N Non-invasive

Panulirus versicolor painted spiny lobster – – – – N Non-invasive

Paragoniastrea australensis lesser star coral – – – – N Non-invasive

Pavona cactus – – – – – N Non-invasive

Penaeus japonicus kuruma prawn – – N – N Non-invasive

Penaeus stylirostris blue shrimp – – – – N Non-invasive

Perna viridis Asian green mussel – Y Y Y n.a. Invasive

Petrolisthes lamarckii – – – – – N Non-invasive

Pinctada maxima silverlip pearl oyster – – – – N Non-invasive

Plicatula plicata plicate kitten’s paw – – n.e. – N Non-invasive

Pocillopora damicornis cauliflower coral – – – – N Non-invasive

Polinices albumen – – – – – N Non-invasive

Porites cylindrica yellow finger coral – – – – N Non-invasive

Portunus segnis – – – N – Y Invasive
Portunus trituberculatus Gazami crab N – – – N Non-invasive
Potamocorbula amurensis brackish-water corbula – Y Y – n.a. Invasive
Pteria hirundo European wing oyster – – n.e. – N Non-invasive
Rapana venosa purple whelk N Y Y Y n.a. Invasive
Rhinoclavis kochi Koch’s cerith – – n.e. – N Non-invasive
Ruditapes philippinarum Manila clam – – Y – n.a. Invasive
Saccostrea cuccullata hooded oyster – – – – N Non-invasive
Schizophrys aspera common decorator crab – – n.e. – N Non-invasive
Septifer cumingii – N – – – N Non-invasive
Seriatopora hystrix thin birdsnest coral – – – – N Non-invasive

Spondylus spinosus spiny oyster – – – – N Non-invasive
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(R Core Team 2023). Permutational ANOVA with normalization of the data was 
used to test for differences in confidence factor (CF: see Vilizzi et al. 2022a) be-
tween components (i.e., BRA and BRA+CCA); this used a Bray-Curtis dissimilar-
ity measure, 9999 unrestricted permutations of the raw data, and statistical effects 
evaluated at α = 0.05.

Results

A risk screening report was generated for each of the 138 species within this study 
(see Suppl. material 3). Regarding the confidence factor (CF), the mean CFTotal was 
0.594 ± 0.006, the mean CFBRA 0.600 ± 0.006, and the mean CFCCA 0.544 ± 0.010 
(hence, in all cases indicating medium confidence). The mean CFBRA was higher 
than the mean CFCCA (F#

1,274 = 23.83, P# < 0.001; # = permutational value). Owing 
to differences in score minima and maxima of the BRA and BRA+CCA, the score 
intervals used to rank species, based on taxon-specific thresholds, were as follows: 
BRA: Low [–20, 1[ ; Medium [1, Threshold[ ; High [Threshold, 70]; BRA+CCA: 
Low [–32, 1[ ; Medium [1, Threshold[ ; High [Threshold, 82]. Note that threshold 
intervals are presented using the appropriate statistical use of interval brackets “]” 
and “[”, with the reverse bracket notation indicating an open interval.

Fishes

All 32 fishes screened were categorized a priori as non-invasive (Table 1). Based 
on the BRA outcome scores (Table 2, Fig. 2A), 13 species (40.6%) were ranked as 
high risk and 19 (59.4%) as medium risk. Of these species, 13 were false positives. 
Based on the BRA+CCA outcome scores (Table 2, Fig. 2B), 14 species (43.8%) 
were ranked as high or very high risk and 18 (56.3%) as medium risk. Of these 
species, 14 were false positives. All high-risk species for the BRA were also classi-
fied as high risk after accounting for climate change predictions (cf. BRA+CCA), 
which resulted in the additional inclusion of the lowfin scorpionfish Scorpaenodes 
parvipinnis (Garrett, 1864) (medium risk for the BRA).

Based on an ad hoc very high-risk threshold ≥ 20, the highest-scoring species were 
California scorpionfish Scorpaena guttata Girard, 1854 and red scorpionfish Scorpaena 
scrofa Linnaeus, 1758 for both the BRA and BRA+CCA, and daggertooth pike conger 
Muraenesox cinereus (Forsskål, 1775), weedy scorpionfish Rhinopias frondosa (Günther, 
1892), yellowfin scorpionfish Scorpaenopsis neglecta Heckel, 1837, tassled scorpionfish 

A priori categorization
Taxon name Common name D’base CABI GISD IESNA Scholar Category

Stichodactyla gigantea gigantic sea anemone – – – – N Non-invasive

Stiliger fuscovittatus brown-streak stiliger – – – – N Non-invasive

Stylophora pistillata smooth cauliflower coral – – – – N Non-invasive

Synalpheus africanus – – – – – N Non-invasive

Tegillarca granosa granular ark N – – – N Non-invasive

Theora lata – – – – – N Non-invasive

Theora lubrica Asian semele – – – – Y Invasive

Timoclea marica – N – – – N Non-invasive

Toxopneustes pileolus flower urchin N – – – N Non-invasive

Tubastraea tagusensis – – – – – N Non-invasive

Urosalpinx cinerea Atlantic oyster drill – Y Y – N Invasive
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Table 2. Risk ranks for the taxa evaluated with the Aquatic Species Invasiveness Screening Kit for the northern Gulf of Mexico. For each 
taxon, the following information is provided: a priori categorization for invasiveness (N = non-invasive; Y = invasive: see Table 1), BRA (Ba-
sic Risk Assessment) and BRA+CCA (BRA + Climate Change Assessment) scores with corresponding risk ranks (L = Low; M = Medium; H 
= High; VH = Very high, based on an ad hoc threshold ≥ 20 for fishes and ≥ 40 for invertebrates: see text for details), classification (Class: FN 
= false negative; FP = false positive; TN = true negative; TP = true positive; ‘–’ = not applicable as medium-risk: see text for details), and dif-
ference (Delta) between BRA+CCA and BRA risk scores. CF = confidence factor, which is based on confidence levels (see text for details). 
Risk ranks are based on the following thresholds (Thr) for distinguishing between H-risk species and species of L or M risk: 12.75 for fishes, 
22.5 for tunicates, 22.25 for invertebrates. In all cases, the threshold between L and M is ‘1’. Note also the differences in score minima 
and maxima for BRA (–20, 70) and BRA+CCA (–32, 82) due to differences in the total number of questions, i.e. 49 and 55, respectively.

BRA BRA+CCA CF
Taxon name A priori Score Rank Class Score Rank Class Delta Total BRA CCA

Fishes

Conger verreauxi N 11.0 M – 11.0 M – 0 0.53 0.53 0.50

Dendrochirus barberi N 6.0 M – 6.0 M – 0 0.55 0.56 0.50

Dendrochirus biocellatus N 3.0 M – 3.0 M – 0 0.57 0.58 0.50

Dendrochirus brachypterus N 12.0 M – 12.0 M – 0 0.61 0.63 0.50

Dendrochirus zebra N 10.0 M – 10.0 M – 0 0.61 0.62 0.50

Fundulus heteroclitus heteroclitus N 14.0 H FP 14.0 H FP 0 0.69 0.71 0.50

Heniochus diphreutes N 7.0 M – 9.0 M – 2 0.70 0.71 0.54

Lythrypnus dalli N 4.0 M – 4.0 M – 0 0.59 0.59 0.58

Muraenesox cinereus N 15.0 H FP 23.0 VH FP 8 0.64 0.67 0.42

Parapterois heterura N 4.0 M – 4.0 M – 0 0.47 0.46 0.50

Platax orbicularis Y 15.0 H TP 15.0 H TP 0 0.65 0.68 0.33

Pterois antennata N 9.0 M – 9.0 M – 0 0.59 0.60 0.50

Pterois cincta N 5.0 M – 5.0 M – 0 0.55 0.56 0.50

Pterois lunulata N 12.0 M – 12.0 M – 0 0.57 0.58 0.50

Pterois mombasae N 7.0 M – 7.0 M – 0 0.57 0.58 0.50

Pterois radiata N 5.0 M – 5.0 M – 0 0.60 0.61 0.50

Pterois russelii N 19.0 H FP 19.0 H FP 0 0.56 0.57 0.50

Pterois sphex N 5.0 M – 5.0 M – 0 0.60 0.61 0.50

Rhinopias eschmeyeri N 16.0 H FP 18.0 H FP 2 0.53 0.54 0.50

Rhinopias frondosa N 18.0 H FP 26.0 VH FP 8 0.60 0.61 0.54

Scorpaena guttata N 22.0 VH FP 30.0 VH FP 8 0.70 0.72 0.50

Scorpaena mystes N 13.0 H FP 15.0 H FP 2 0.50 0.51 0.46

Scorpaena scrofa N 20.0 VH FP 22.0 VH FP 2 0.50 0.51 0.46

Scorpaenodes parvipinnis N 9.0 M – 13.0 H FP 4 0.45 0.46 0.38

Scorpaenopsis macrochir N 14.0 H FP 16.0 H FP 2 0.45 0.45 0.42

Scorpaenopsis neglecta N 19.0 H FP 21.0 VH FP 2 0.46 0.46 0.42

Scorpaenopsis oxycephalus N 19.0 H FP 21.0 VH FP 2 0.44 0.44 0.42

Scorpaenopsis papuensis N 18.0 H FP 22.0 VH FP 4 0.45 0.44 0.50

Scorpaenopsis vittapinna N 11.0 M – 11.0 M – 0 0.44 0.41 0.63

Sebastapistes cyanostigma N 10.0 M – 10.0 M – 0 0.44 0.42 0.63

Sebastapistes strongia N 11.0 M – 11.0 M – 0 0.46 0.44 0.63

Semicossyphus pulcher N 10.0 M – 12.0 M – 2 0.56 0.60 0.25

Tunicates

Asterocarpa humilis N 11.5 M – 13.5 M – 2 0.64 0.65 0.54

Botrylloides violaceus Y 34.0 H TP 38.0 H TP 4 0.59 0.60 0.50

Clavelina lepadiformis N 14.0 M – 14.0 M – 0 0.60 0.62 0.46



Horizon scan of potential invasive marine species in the northern Gulf of Mexico

427Kathryn A. O'Shaughnessy et al. (2023), Aquatic Invasions 18(4): 415–453, 10.3391/ai.2023.18.4.114182

BRA BRA+CCA CF
Taxon name A priori Score Rank Class Score Rank Class Delta Total BRA CCA

Corella eumyota Y 16.5 M – 12.5 M – −4 0.59 0.60 0.50

Didemnum vexillum Y 35.0 H TP 41.0 H TP 6 0.59 0.62 0.33

Trididemnum solidum Y 23.0 H TP 33.0 H TP 10 0.55 0.57 0.38

Invertebrates

Acanthaster planci Y 9.0 M – 11.0 M – 2 0.69 0.69 0.63

Acropora abrolhosensis N 9.0 M – 11.0 M – 2 0.55 0.56 0.54

Acropora acuminata N 12.0 M – 12.0 M – 0 0.58 0.58 0.58

Acropora grandis N 12.0 M – 12.0 M – 0 0.58 0.58 0.58

Acropora longicyathus N 13.0 M – 13.0 M – 0 0.58 0.58 0.58

Acropora robusta N 12.0 M – 12.0 M – 0 0.58 0.58 0.58

Anadara inaequivalvis N 17.0 M – 17.0 M – 0 0.68 0.67 0.75

Anadara kagoshimensis Y 11.0 M – −1.0 L FN −12 0.63 0.62 0.75

Anadara satowi N 4.0 M – −2.0 L TN −6 0.65 0.64 0.75

Arcuatula senhousia Y 22.5 H TP 10.5 M – −12 0.54 0.52 0.75

Argopecten noronhensis N 5.0 M – 17.0 M – 12 0.59 0.57 0.75

Argopecten nucleus N 5.0 M – 17.0 M – 12 0.60 0.58 0.75

Argopecten ventricosus N 9.0 M – 21.0 M – 12 0.57 0.58 0.50

Atrina pectinata N 10.0 M – 22.0 M – 12 0.63 0.64 0.50

Bankia destructa N 25.0 H FP 35.0 H FP 10 0.64 0.69 0.25

Bankia zeteki N 24.0 H FP 12.0 M – −12 0.56 0.60 0.25

Batillaria attramentaria Y 28.0 H TP 34.0 H TP 6 0.62 0.63 0.50

Batissa violacea N 9.0 M – 21.0 M – 12 0.41 0.43 0.25

Brachidontes pharaonis Y 24.0 H TP 36.0 H TP 12 0.62 0.60 0.75

Calappa hepatica N 13.0 M – 21.0 M – 8 0.56 0.57 0.46

Calcinus laevimanus N 10.0 M – 14.0 M – 4 0.66 0.65 0.71

Camposcia retusa N 12.0 M – 18.0 M – 6 0.54 0.55 0.46

Celleporaria brunnea N 6.0 M – 8.0 M – 2 0.68 0.68 0.71

Cerithium columna N 9.0 M – 13.0 M – 4 0.60 0.60 0.54

Chama asperella N 15.0 M – 15.0 M – 0 0.57 0.61 0.25

Charybdis (Charybdis) hellerii Y 10.0 M – 10.0 M – 0 0.62 0.64 0.50

Clypeomorus bifasciata N 15.0 M – 21.0 M – 6 0.61 0.62 0.54
Crassostrea brasiliana N 26.0 H FP 38.0 H FP 12 0.72 0.71 0.75
Crassostrea columbiensis N 29.0 H FP 17.0 M – −12 0.63 0.64 0.50
Crassostrea tulipa N 26.0 H FP 38.0 H FP 12 0.70 0.70 0.75
Crepidula onyx Y 26.5 H TP 26.5 H TP 0 0.65 0.67 0.50
Dardanus pedunculatus N 13.0 M – 17.0 M – 4 0.56 0.56 0.54
Dendostrea sandvichensis N 16.0 M – 28.0 H FP 12 0.57 0.55 0.75
Dipsastraea pallida N 14.0 M – 14.0 M – 0 0.58 0.58 0.58
Enoplometopus holthuisi N 10.0 M – 16.0 M – 6 0.52 0.52 0.50
Ensis leei N 9.5 M – 3.5 M – −6 0.55 0.56 0.50
Favites complanata N 12.0 M – 12.0 M – 0 0.58 0.58 0.58
Fragum fragum N 4.0 M – 16.0 M – 12 0.52 0.52 0.50
Fulvia fragilis N −0.5 L TN −10.5 L TN −10 0.55 0.55 0.50
Gonodactylaceus falcatus Y 28.0 H TP 34.0 H TP 6 0.63 0.64 0.54
Hemigrapsus takanoi Y 34.0 H TP 42.0 VH TP 8 0.70 0.72 0.50

Hiatula rosea N −1.5 L TN 10.5 M – 12 0.56 0.57 0.50
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BRA BRA+CCA CF
Taxon name A priori Score Rank Class Score Rank Class Delta Total BRA CCA

Hippopus hippopus N 8.0 M – 20.0 M – 12 0.56 0.57 0.50

Homophyllia australis N 12.0 M – 12.0 M – 0 0.57 0.57 0.58

Hyotissa hyotis N 33.0 H FP 45.0 VH FP 12 0.59 0.60 0.50

Ilyanassa obsoleta Y 37.0 H TP 35.0 H TP −2 0.68 0.70 0.46

Indothais lacera N 37.0 H FP 43.0 VH FP 6 0.57 0.58 0.50

Isopora palifera N 12.0 M – 12.0 M – 0 0.58 0.58 0.58

Laternula gracilis N 1.5 M – −10.5 L TN −12 0.55 0.56 0.50

Limaria hians N 9.0 M – 21.0 M – 12 0.53 0.54 0.50

Lopha cristagalli N 5.0 M – 17.0 M – 12 0.53 0.53 0.50

Lyrodus medilobatus N 17.0 M – 29.0 H FP 12 0.66 0.65 0.75

Lysmata vittata Y 25.0 H TP 31.0 H TP 6 0.64 0.65 0.54

Madracis formosa N 10.0 M – 10.0 M – 0 0.58 0.58 0.58

Magallana gigas Y 37.0 H TP 25.0 H TP −12 0.67 0.70 0.46

Montipora foliosa N 13.0 M – 17.0 M – 4 0.58 0.58 0.58

Mytella strigata Y 27.5 H TP 39.5 H TP 12 0.68 0.67 0.75

Mytilopsis adamsi N 18.0 M – 30.0 H FP 12 0.61 0.63 0.50

Mytilopsis sallei Y 40.0 VH TP 52.0 VH TP 12 0.69 0.71 0.50

Mytilus californianus N 13.0 M – 1.0 M – −12 0.68 0.67 0.75

Mytilus edulis N 18.5 M – 6.5 M – −12 0.70 0.70 0.75

Nitidotellina valtonis N -1.0 L TN 11.0 M – 12 0.63 0.62 0.75

Ophiothela mirabilis Y 10.5 M – 12.5 M – 2 0.66 0.67 0.63

Palaemon carinicauda N 9.0 M – 9.0 M – 0 0.61 0.62 0.50

Panulirus regius N 22.0 M – 28.0 H FP 6 0.64 0.65 0.54

Panulirus versicolor N 17.0 M – 23.0 H FP 6 0.65 0.66 0.58

Paragoniastrea australensis N 12.0 M – 12.0 M – 0 0.58 0.58 0.58

Pavona cactus N 10.0 M – 10.0 M – 0 0.58 0.58 0.58

Penaeus japonicus N 22.5 H FP 26.5 H FP 4 0.66 0.67 0.54

Penaeus stylirostris N 15.5 M – 19.5 M – 4 0.60 0.62 0.50

Perna viridis Y 37.0 H TP 49.0 VH TP 12 0.68 0.70 0.50

Petrolisthes lamarckii N 13.0 M – 13.0 M – 0 0.60 0.61 0.50

Pinctada maxima N 17.0 M – 29.0 H FP 12 0.68 0.70 0.50

Plicatula plicata N 22.0 M – 34.0 H FP 12 0.56 0.57 0.50

Pocillopora damicornis N 14.0 M – 14.0 M – 0 0.58 0.58 0.58
Polinices albumen N 9.0 M – 15.0 M – 6 0.62 0.64 0.50
Porites cylindrica N 14.0 M – 14.0 M – 0 0.58 0.58 0.58
Portunus segnis Y 26.0 H TP 32.0 H TP 6 0.59 0.60 0.50
Portunus trituberculatus N 17.0 M – 17.0 M – 0 0.62 0.63 0.50
Potamocorbula amurensis Y 27.0 H TP 21.0 M – −6 0.73 0.77 0.46
Pteria hirundo N 25.0 H FP 25.0 H FP 0 0.63 0.64 0.50
Rapana venosa Y 51.0 VH TP 61.0 VH TP 10 0.76 0.77 0.71
Rhinoclavis kochi N 10.5 M – 16.5 M – 6 0.58 0.59 0.54
Ruditapes philippinarum Y 17.0 M – 29.0 H TP 12 0.65 0.64 0.75
Saccostrea cuccullata N 27.0 H FP 39.0 H FP 12 0.63 0.61 0.75
Schizophrys aspera N 11.0 M – 13.0 M – 2 0.57 0.58 0.50
Septifer cumingii N 27.0 H FP 39.0 H FP 12 0.62 0.61 0.75

Seriatopora hystrix N 10.0 M – 10.0 M – 0 0.58 0.58 0.58
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Scorpaenopsis oxycephalus (Bleeker, 1849), and Papuan scorpionfish Scorpaenopsis papu-
ensis (Cuvier, 1829) for the BRA+CCA only (Fig. 2A, B). The CCA resulted in an in-
crease in the BRA score for 13 species and in no change for the remaining 19 (Table 2).

For the high-risk species, invasiveness was mostly attributed to their ability to exploit 
resources and their undesirable traits, which may increase persistence, and moderately 
positively influenced by their ability to disperse. There was very little influence on their 
potential invasiveness from domestication, climate/distribution/introduction risk, in-
vasiveness elsewhere, and reproduction, and no influence from tolerance attributes. 
Invasiveness was moderately influenced by climate change (Fig. 3A).

Tunicates

Of the six tunicates screened, two were categorized a priori as non-invasive and 
four as invasive (Table 1). Based on the BRA outcome scores (Table 2, Fig. 2C), 
three species (50.0%) were ranked as high risk (i.e. purple colonial tunicate Botryl-
loides violaceus Oka, 1927, carpet sea squirt Didemnum vexillum Kott, 2002, and 
overgrowing mat tunicate Trididemnum solidum (Van Name, 1902)) and three 
species (50.0%) as medium risk. All three high-risk species were a priori invasive 
hence true positives. Of the three medium-risk species, two were a priori non-in-
vasive and one was a priori invasive. Based on the BRA+CCA outcome scores 
(Table 2, Fig. 2D), the same risk ranks were obtained as for the BRA. The CCA 
resulted in an increase in the BRA score for four species, no change for one, and a 
decrease for one (Table 2).

High-risk scores for the tunicates were mostly driven by their history of invasion 
elsewhere and their undesirable traits making them more persistent, and moderate-
ly by their ability to tolerate a wide range of environmental conditions (e.g. salin-
ity, flow rates) (Fig. 3B). The highest risk scores for tunicates were generally lower 
than the highest invertebrate scores; this was largely due to lack of domestication 
and cultivation of tunicates as well as lower resource exploitation by tunicates com-
pared to shellfishes and marine snails.

Invertebrates

Of the 100 invertebrates screened, 78 were categorized a priori as non-invasive and 
22 as invasive (Table 1). The large sample size and proportion of a priori non-inva-
sive and invasive species allowed for risk assessment area-specific calibration using 

BRA BRA+CCA CF
Taxon name A priori Score Rank Class Score Rank Class Delta Total BRA CCA

Spondylus spinosus N 17.0 M – 29.0 H FP 12 0.61 0.59 0.75
Stichodactyla gigantea N 14.0 M – 14.0 M – 0 0.57 0.57 0.58
Stiliger fuscovittatus N 7.0 M – 9.0 M – 2 0.61 0.62 0.50
Stylophora pistillata N 14.0 M – 14.0 M – 0 0.58 0.58 0.63
Synalpheus africanus N 10.0 M – 18.0 M – 8 0.62 0.63 0.50
Tegillarca granosa N 21.0 M – 33.0 H FP 12 0.64 0.62 0.75
Theora lata N 11.0 M – 23.0 H FP 12 0.51 0.52 0.50
Theora lubrica Y 16.5 M – 4.5 M – −12 0.52 0.52 0.50
Timoclea marica N 5.0 M – 17.0 M – 12 0.55 0.56 0.50
Toxopneustes pileolus N 1.0 M – 3.0 M – 2 0.65 0.66 0.63
Tubastraea tagusensis N 26.0 H FP 26.0 H FP 0 0.60 0.60 0.58
Urosalpinx cinerea Y 31.0 H TP 31.0 H TP 0 0.69 0.71 0.50
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ROC analysis to identify a threshold with which to distinguish between medi-
um-risk and high-risk species. The ROC curve resulted in an AUC of 0.8185 
(0.7074–0.9296 95% CI), hence with excellent discriminatory power, and thus 
providing a threshold of 22.25.

Based on the BRA outcome scores (Table 2, Fig. 4A, 5A), 28 species (28.0%) 
were ranked as high risk, 69 (69.0%) as medium risk, and three (3.0%) as low risk. 
Amongst the 78 a priori non-invasive species, 12 were false positives and three true 
negatives, and amongst the 22 a priori invasive species, 16 were true positives. Of 
the 69 medium-risk species, 63 were a priori non-invasive and six invasive. Based 
on the BRA+CCA outcome scores (Table 2, Fig. 4B, 5B), 35 species (35.0%) 
were ranked as high risk, 61 (61.0%) as medium risk, and four (4.0%) as low risk. 
Amongst the a priori non-invasive species, 20 were false positives and three true 
negatives. Amongst the a priori invasive species, 15 were true positives and one a 
false negative: Anadara kagoshimensis (Tokunaga, 1906). Of the 61 medium-risk 
species, 55 were a priori non-invasive and six invasive.

Based on an ad hoc very high-risk threshold ≥ 40, the highest-scoring species 
were Santo Domingo false mussel Mytilopsis sallei (Récluz, 1849) and purple whelk 
Rapana venosa (Valenciennes, 1846) for both the BRA and BRA+CCA, and hon-
eycomb oyster Hyotissa hyotis (Linnaeus, 1758), carinate rock shell Indothais lacera 
(Born, 1778), brush-clawed shore crab Hemigrapsus takanoi Asakura & Watanabe, 
2005 and, Asian green mussel Perna viridis (Linnaeus, 1758) for the BRA+CCA 

Figure 2. Aquatic Species Invasiveness Screening Kit (AS-ISK) outcome scores: (A) Basic Risk Assessment (BRA) scores for fishes; 
(B) BRA+CCA (Climate Change Assessment) scores for fishes; (C) BRA scores for tunicates; (D) BRA+CCA scores for tunicates. Red 
bars = very high-risk species; Black bars = high-risk species; Gray bars = medium-risk species. Solid line = very high-risk (VH) threshold; 
Hatched line = high-risk (H) threshold; Dotted line = medium-risk (M) threshold (thresholds as per Table 2).
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Figure 3. Mean (± SE) score partitioning for the AS-ISK scoring categories used to evaluate the invasiveness potential of the species 
ranked as high and very high risk (see Table 2): (A) Fishes (n = 14); (B) Tunicates (n = 3); (C) Invertebrates (n = 35).
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Figure 4. Outcome scores for the first 50 invertebrates (sorted by decreasing score) screened with the AS-ISK: (A) BRA scores; (B) BRA+C-
CA scores. Red bars = very high-risk species; Black bars = high-risk species; Gray bars = medium-risk species. Solid line = very high-risk 
(VH) threshold; Hatched line = high-risk (H) threshold; Dotted line = medium-risk (M) threshold (thresholds as per Table 2).
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Figure 5. Outcome scores for the last 50 invertebrates (sorted by decreasing score) screened with the AS-ISK: (A) BRA scores; (B) BRA+C-
CA scores. Gray bars = medium-risk species; White bars = low-risk species. Dotted line = medium-risk (M) threshold (as per Table 2).
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only (Fig. 4A, B). The CCA resulted in an increase in the BRA score for 60 species, 
in no change for 26, and in a decrease for the remaining 14 (Table 2).

Invertebrate invasiveness was largely attributed to history of invasion elsewhere 
as well as undesirable traits, and moderately influenced by tolerance attributes; 
however, there was very little influence from climate/distribution/introduction 
risk. Invasiveness potential of the high-risk invertebrates was substantially exacer-
bated by climate change (Fig. 3C).

Discussion

The present study represents the largest horizon-scanning of marine species thus 
far implemented in the risk screening of non-native species with WRA-type de-
cision support tools. This screening of potential marine invasive species in the 
northern Gulf of Mexico has identified a total of four very high-risk and 40 high-
risk species under current conditions (cf. BRA). When predicted future climate 
conditions were taken into consideration (BRA+CCA), 13 species were classed as 
very high-risk and 39 species as high-risk. The high proportion of positive delta 
values (i.e. the difference between BRA and BRA+CCA) for fishes, tunicates, and 
invertebrates (Table 2) indicates that climate change will enhance the chances of 
introduction, establishment, and dispersal in the northern Gulf of Mexico, with 
all very high-risk species classified as such due to an elevation of their BRA scores 
following the climate change assessment. This, in combination with numerous 
known pathways of introduction to the northern Gulf of Mexico such as impor-
tation of ornamental marine organisms, exchange of ballast water, presence of 
aquaculture activities, and support of international vessels, may further impact an 
already highly perturbed waterbody.

Highest-risk species

Invasiveness of the highest-scoring fish species was mostly attributed to their 
undesirable traits and resource exploitation. Notably, six of the seven very high-
risk fish species are from the Family Scorpaenidae, all of which share many sim-
ilarities with two invasive scorpaenid lionfishes: Pterois volitans and devil firefish 
Pterois miles (Bennett, 1828). These invasive traits include their biological attri-
butes (i.e. extremely cryptic camouflage, stationary ambush/suction predator), 
depth occupation (i.e. remains on or near the sea floor or other substrata), and 
habitats. Scorpaenid fishes are popular in the aquarium trade, and like lionfish-
es, some species (e.g. Rhinopias frondosa) are likely to be released from aquaria 
to open waters (Courtenay and Stauffer 1990; Dill and Cordone 1997; Copp et 
al. 2005c), especially if they become ‘a nuisance’ (e.g. displaying aggressive and 
predatory behaviors: Duggan et al. 2006). Fishes within the family Scorpaeni-
dae can have social and ecological impacts because they possess hollow spines 
on their dorsal fins, which inject a painful venom when stepped on or pressed 
into the skin (Halstead et al. 1955)—this poses a risk to human health and lim-
its predation by native fishes (Anton et al. 2014). If established in the northern 
Gulf of Mexico in high densities, then the highly predatory feeding behavior, 
including prey naiveté of Scorpaenidae (sensu Anton et al. 2014), may lead to 
declines in native reef fishes and forage species like that seen in the lionfish in-
vasion. Muraenesox cinereus was the only very high-risk fish species that is not 
within the Scorpaenidae, but it is known to exploit resources by opportunistic 
predation on a wide variety of small-bodied fishes and crustaceans (McCosker 
et al. 2021).
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Many fishes categorized as a priori non-invasive, particularly within the Scor-
paenidae, were subsequently ranked as high and very high risk in this study. As 
much of the available information on the biology of these species is only in the 
form of aquarium and hobbyist websites, these species may have been extremely 
difficult to classify appropriately prior to risk screenings being conducted. More-
over, the northern Gulf of Mexico has experienced the invasion of the con-familial 
Indo-Pacific lionfishes P. volitans and P. miles over the past decades—these inva-
sions are viewed as amongst the most destructive experienced in the Caribbean and 
along the U.S. Atlantic coast (NOAA 2022). Lionfish populations in these areas 
have expanded at astonishing speeds, with noticeable impacts on native coral-reef 
fishes, the wider coral reef communities, and commercial and recreational fisheries 
(Lesser and Slattery 2011; Albins 2013; NOAA 2022). The Flower Garden Banks 
National Marine Sanctuary, a protected coral reef system in the northwestern Gulf 
of Mexico, has experienced a rapid invasion of lionfish (Johnston et al. 2016). 
There is growing concern that lionfishes will cause detrimental ecological impacts 
to the area (Belter et al. 2020). As such, scientists have noted the threat posed by 
lionfishes and fishes in the wider Scorpaenidae family (e.g. Lyons et al. 2019). 
Furthermore, many fish species screened in the present study may have scored 
high due to the risk assessment area’s proximity to the subtropical and tropical 
conditions in Florida and the Caribbean Sea, respectively, and the known invasions 
documented in these areas (e.g. Debrot et al. 2011; Tidbury et al. 2021).

For the tunicates and invertebrates, high screening scores in the present study 
were largely attributed to their history of invasion elsewhere in the world, driven 
by their ability to tolerate a wide range of environmental conditions—this be-
ing underpinned by their biological characteristics facilitating establishment and 
dispersal. The highest-scoring tunicate, Botrylloides violaceus, originates from the 
western Pacific but has invaded marine waters worldwide, including the north-
east Pacific, northeast and northwest Atlantic, Mediterranean, Adriatic, Black and 
North Seas, and Australian waters (Zaniolo et al. 1998; Pederson et al. 2005; Bock 
et al. 2011; Seebens et al. 2017). Invasion success of B. violaceus has been attribut-
ed to tolerance of a wide range of environmental conditions including tempera-
ture, salinity, and nutrients (Carman et al. 2007), as well as its ability to colonize 
a diversity of substrata and discourage settlement of other organisms due to rapid 
growth and potentially acidic tunic (Pisut and Pawlik 2002).

Amongst screened invertebrates, the highest scoring species Rapana venosa, which 
predates on ecologically and economically important bivalves such as mussels, oys-
ters, clams, and scallops, has severely affected bivalve fisheries in the Black Sea (Zo-
lotarev 1996). Rapana venosa is projected to negatively affect populations of the hard 
clam Mercenaria mercenaria (Linnaeus, 1758) in Chesapeake Bay, where it was esti-
mated that a R. venosa population of just 1,000 individuals could reduce the annual 
harvest of M. mercenaria by 0.3–0.9% per year (Savini et al. 2002). In the northern 
Gulf of Mexico, R. venosa could impact the commercially important fisheries for 
eastern oyster Crassostrea virginica (Gmelin, 1791). The impact, however, may be 
less pronounced for C. virginica compared to M. mercenaria, as many oyster beds are 
found in salinities at or near the lower tolerance limits of R. venosa (Mann and Hard-
ing 2000). Rapana venosa also feeds on the carrion of mussels, oysters, fishes, and 
crabs (Zolotarev 1996) and thus may benefit in areas of heavy recreational fishing, 
which are common along the northern Gulf of Mexico coast. Rapana venosa may 
also compete with native predatory gastropod species of the genera Busycon, Busy-
cotypus, Neverita, Stramonita, as well as other predators of bivalve mollusks, such as 
croakers and rays (Lercari and Bergamino 2011). Also, the invasion of Chesapeake 
Bay by R. venosa has changed mollusk shell resources for hermit crabs in a manner 
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that favors striped hermit crab Clibanarius vittatus (Bosc, 1801) over other species 
of hermit crab (Harding and Mann 1999). In addition, R. venosa may affect juvenile 
sea turtles in the northern Gulf of Mexico, such as the endangered Kemp’s ridley sea 
turtle Lepidochelys kempii Garman, 1880 by fouling their carapaces as much as 20% 
of their body weight, thus weighing them down substantially (Lezama et al. 2013). 
However, that initial study reported the intriguing result that fitness (i.e. weight rel-
ative to carapace length) was greater in heavily biofouled than in ‘clean’ green turtle 
Chelonia mydas (Linnaeus, 1758) of the study area (Lezama et al. 2013).

Introduction vectors and dispersal pathways

Ballast water exchange is recognized as one of the primary introduction vectors of 
marine non-native species (Carlton and Geller 1993; Ruiz et al. 1997; Gollasch 
2008), with this vector being mentioned for several of the very high-risk species 
from this study (e.g. Hemigrapsus takanoi, Rapana venosa, Scorpaena scrofa; see Sup-
pl. material 3). Owing to the heavy presence of global ship traffic to support oil 
and gas operations, commercial fisheries, and other large industries, there is an 
increased risk of invasive species being introduced to the northern Gulf of Mexico 
in ballast waters taken onboard in other regions of the world. Previous studies have 
determined that species of diatom and dinoflagellate (Steichen and Quigg 2015), 
coral (Sammarco et al. 2010), and shrimp (Fuller et al. 2014) were all introduced 
to waters around shipping ports along the U.S. Gulf Coast. Most of the very high-
risk species identified in the present study exhibit a pelagic stage during their life 
cycles and are known to produce a large number of offspring within a short time-
frame. For example, an individual R. venosa can produce 182,000–1,302,000 eggs/
year (Chung et al. 2013), with larvae that remain planktonic for 24 to 42 days 
(Harding 2006). Similarly, Hemigrapsus spp. are known to produce ≈ 56,000 eggs 
per brood 5–6 times per year (Fukui 1988), with larvae being planktonic for up 
to one month before entering the juvenile stage (EOEEA 2012). These planktonic 
larval stages are well within the temporal window of opportunity for trans-oceanic 
transport in ballast water from distant locations (Kerckhof et al. 2006).

A common vector of introduction for fouling marine taxa is hull fouling of ships 
and mobile marine structures (e.g. mobile oil platforms) (Gollasch 2002; Godwin 
2003; Wanless et al. 2010), with this vector being highlighted for several biofou-
lants in this study. The high-risk tunicate, Didemnum vexillum, is a colonial spe-
cies native to Japan but invasive globally, including coastal areas of New Zealand, 
Europe, UK, and the east and west coasts of the U.S. Didemnum vexillum has a 
non-feeding tadpole larval stage that is present in the water column for < 24 hours 
(Olson 1983; Holland 2016). As such, transport of D. vexillum in ballast water or 
its spread via natural dispersion over long distances is unlikely. Rather, D. vexillum 
introductions have largely been as a hull foulant (Pederson et al. 2005), whereby 
adult colonies are able to remain attached because they create very little drag for the 
relatively slow-moving vessels (Clarke Murray et al. 2012). Non-native species can 
also be transported by way of associations with biofouling communities (i.e. small-
er organisms living amongst interstitial crevices created by fouling organisms). For 
example, the screening of Hemigrapsus takanoi identified potential spread through 
juveniles or adults living amongst hull fouling communities (Suppl. material 3)—
this introduction vector has previously been documented for grapsid crab Hemi-
grapsus penicillatus (Gollasch 1998), which was later re-identified as H. takanoi (as 
described in Wood et al. 2005). This phenomenon of ‘hitchhiking invasives’ also 
includes non-native marine organisms attached to, even colonizing, floating ma-
rine debris (Barry et al. 2023), which is an emerging research area.
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Over the past few centuries, global movement of fishes and shellfishes has 
contributed substantially to the translocation of associated marine species, with 
many introductions being traced back to specific transport events (Carlton 1989; 
Minchin 2007). In the present study, the screening of Rapana venosa identified 
translocation with shellfishes as a potential vector for its introduction into the 
northern Gulf of Mexico, as it has been known to spread via transport of egg mass-
es within marine aquaculture and live seafood (Mann and Harding 2000; ICES 
2004; Harding and Mann 2005). Moreover, the U.S. is the world’s leading im-
porter of ornamental marine organisms, representing half of all marine ornamental 
trade (Rhyne et al. 2012). Most of the high-risk fishes screened in the present study 
include species that are popular in the aquarium trade (i.e. Scorpaenidae). As such, 
there is a high risk of introduction to the risk assessment area through this pathway 
via unintentional escape during transport or intentional release of unwanted fishes 
by owners or breeders (Semmens et al. 2004; Chan et al. 2019).

Although new species introductions and secondary spread are often attributed to 
human-mediated vectors, warmer waters under future climate change conditions 
are expected to enhance the natural dispersal and migration of invasive species 
from established populations (Dukes and Mooney 1999; Mieszkowska et al. 2006; 
Dodd et al. 2022). This is of particular concern for the northern Gulf of Mexico, 
which due to its proximity to subtropical and tropical conditions in Florida and 
the Caribbean Sea, respectively, is already at risk of invasions by naturally dispers-
ing warmwater invasive species that are already present in neighboring areas. This 
pattern has previously been observed in other locations with some of the species 
screened for the present study. For example, the tropical Perna viridis arrived in 
Florida in the late 1990s and early 2000s from only two distinct introduction 
events (one in Tampa Bay in the Gulf of Mexico and the other in the northeast 
part of the state along the Atlantic Ocean), but subtropical conditions in these 
locations allowed for rapid natural spread south from both populations (Benson et 
al. 2001; Baker et al. 2007). This indicates that further spread from these popula-
tions into the northern Gulf of Mexico is likely. Although the invasive Indo-Pacific 
lionfishes, Pterois volitans and Pterois miles, were not screened in the present study, 
they have been screened for Grenada and St Vincent and the Grenadines, where 
only P. volitans is known to be present but both were ranked as ‘high risk’ under 
both current and future climate conditions (Tidbury et al. 2021). The expansion of 
lionfishes following their initial report for coastal waters of North Carolina in the 
1990s has been rapid (Schofield 2010). Lionfishes are now considered ubiquitous 
throughout the Caribbean and Western Atlantic (Goodbody-Gringley et al. 2019), 
being pervasive from Rhode Island south to Belize and expanding west across the 
northern Gulf of Mexico (Campbell et al. 2022). Continued warming of Gulf of 
Mexico waters can facilitate the natural spread of other invasive warmwater taxa 
introduced adjacent to or within the risk assessment area.

Trans-boundary conservation management implications

The identification of potential high-risk non-native species through horizon scan-
ning is becoming an essential component of government invasive species manage-
ment strategies (Roy et al. 2015), with trans-boundary collaboration being recog-
nized as vital for regional and large-scale initiatives (Graham et al. 2019; Otto and 
Brunson 2021). For instance, the European Union (EU) Regulation 1143/2014 
on the control and management of alien invasive species (https://ec.europa.eu/
environment/nature/invasivealien/index_en.htm) established an EU-wide strategy 
aimed at preventing and mitigating the adverse impacts of invasive species and 

https://ec.europa.eu/environment/nature/invasivealien/index_en.htm
https://ec.europa.eu/environment/nature/invasivealien/index_en.htm
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focuses on a target list of high-risk species, which were chosen based on a systemat-
ic horizon scan (Roy et al. 2015). Heavily influenced by risk analysis developments 
in the UK (Baker et al. 2008; Mumford et al. 2010; Booy et al. 2011), the EU 
regulatory structure, species list, and associated guidance are intended to allow 
Member States to focus prevention, early detection, and rapid response efforts on 
the species of highest concern. Concerns have been raised, however, that this piece 
of legislation has been less than successful in addressing horizon species and recent 
invaders (Lehtiniemi et al. 2016; Kleitou et al. 2021). Regardless, there already ex-
ists a large body of literature in peer-reviewed international journals on risk screen-
ing and horizon scanning of non-native species in Europe, both within and across 
countries (Copp et al. 2009; Booy et al. 2017; Dodd et al. 2022).

By contrast, the delayed adoption of regulation and horizon scanning in the 
U.S. and Canada relative to Europe (Copp et al. 2005b) especially at larger, 
trans-boundary scales, has resulted in most published reports for the marine envi-
ronment being at the local or state levels with little evidence of interstate or larger 
regional assessments in the published literature (but see Lyons et al. 2020a). Al-
ready a heavily disturbed system, the northern Gulf of Mexico is being subjected 
to an expanding human population and the associated resource exploitation and 
habitat modification and loss. Therefore, the prevention of detrimental invasive 
species, which could exacerbate current pressures, is a potential focus for resource 
management in the region. Such a process could involve regional, cross-border 
collaboration among states as well as direction and support at the federal level in 
order to develop and implement effective strategic plans.

The non-native species screened in the present study have not yet been consid-
ered for U.S. ‘injurious wildlife’ listing, which is a designation under the Lacey Act 
(18 U.S.C. 42) for species that are injurious to the interests of human beings, ag-
riculture, horticulture, forestry, wildlife, or wildlife resources of the United States. 
The resulting list of high- and very high-risk species (‘watchlist’) from this study 
will be provided to the U.S. Fish and Wildlife Service for further review and consid-
eration for ‘injurious wildlife’ listing. Owing to lack of ‘injurious wildlife’ designa-
tion, there is a lack of higher-level federal prohibition on importation of watchlist 
species identified in the present study; however, interstate transport of any invasive 
species that is in violation of state laws (i.e. species prohibited by states) is a viola-
tion of the wildlife trafficking provisions of the Lacey Act. Thus, species identified 
as high or very high risk in the present study may necessitate prevention action 
implemented at the state level. However, differences among states in regulatory 
authority and impetus and support for exercising that authority could result in a 
patchwork of prevention measures that may undermine effective prevention at a 
regional scale. This may be the case for the northern Gulf of Mexico, where species 
introduced in one state where regulations are lacking could subsequently spread 
to other neighboring areas. Regional coordination can help to provide effective 
prevention strategies (e.g. through the Gulf and South Atlantic Regional Panel on 
Aquatic Nuisance Species) for the development of a strategic plan for preventing 
introductions of high- and very high-risk species across the northern Gulf of Mex-
ico region through a combination of public awareness and regulatory approaches 
with a focus on addressing jurisdictional limitations (see Hill et al. 2018).

To inform the development of such a strategic plan, it may be necessary to 
conduct an evaluation of relevant regulatory authorities across northern Gulf of 
Mexico states as well as an assessment of the prevalence and economic importance 
of each high- and very high-risk species in the aquarium trade and other barriers 
to implementation. Horizon scan watchlists provide the opportunity to think crit-
ically and strategically about the live marine organisms currently imported into a 
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jurisdiction. Species that can enter a jurisdiction through trade, and are deemed 
to be high-risk, may need to be evaluated to determine whether their continued 
importation is justified, based on the potential risk the species may pose to the 
local ecology and economy. Such assessments can aid in the development of effec-
tive and feasible approaches for each species to strike a balance between effective 
prevention and minimization of negative economic impacts of regulation. Engage-
ment with the aquatics trade to encourage the implementation of voluntary pre-
vention measures could draw upon the information provided by the risk screen-
ings in the present study. Furthermore, working directly with industry can provide 
the opportunity to reduce sales of species on the watchlist or provide customers 
with information on invasiveness and dangers of release. For example, in the UK, 
legislation and obligatory licensing to keep or release regulated non-native fishes 
proved to be the effective means of eliminating potential future invaders from the 
aquatics trade (Copp et al. 2005a; see also Chan et al. 2019; Li et al. 2021).

The watchlist composed of high- and very high-risk species from the present 
study can also raise awareness of species that could enter a jurisdiction within the 
northern Gulf of Mexico. This provides the opportunity to work across state (and 
indeed national) boundaries to make natural resource managers, wildlife conserva-
tion organizations, researchers, and the public mindful of the risk of these species, 
which may facilitate early detection of new introductions. For example, in the UK, 
marine conservation organizations that host beach cleaning events distribute leaf-
lets describing potential invasive species. Furthermore, watchlists can help decrease 
the lag time between a new sighting of a non-native species and management 
decisions (Branquart et al. 2009; Debrot et al. 2011). As such, the watchlist cre-
ated from the present study can be used to help inform early detection and rapid 
response plans and related strategic planning at both state and regional levels.

Identifying potential geographic entry points, also known as ‘hotspots’ (Tid-
bury et al. 2016, 2021), and the associated introduction vectors and pathways of 
a species on the watchlist, in combination with habitat suitability mapping (e.g. 
Dodd et al. 2022), can inform decisions in the early detection and rapid response 
process. These analytical approaches can focus efforts on optimal habitats where 
species are known to arrive, survive, and reproduce (Tidbury et al. 2016; Cook 
et al. 2019; Lyons et al. 2020b). Mapping hotspots and suitable habitat can in-
form adjustments to existing monitoring programs and facilitate targeted pathway 
management plans to enhance likelihood of detection by sampling in target loca-
tions or focusing on key vectors and pathways (Tidbury et al. 2021). Furthermore, 
identifying these geographic entry points and pathways can help to raise public 
awareness and focus citizen science monitoring programs (Morrisseau and Voyer 
2014), thereby increasing the temporal and spatial breadth of monitoring efforts.

In conclusion, the present study has identified high- and very high-risk horizon 
species of relevance to the northern Gulf of Mexico’s marine environment for the 
current decade, thus providing a list of potential future invaders for consideration 
by resource managers. Given the popularity of certain imported species and variet-
ies, changes with trends in pathways, increases in propagule pressure, emergence of 
new information in the literature, and that novel species are invading new regions, 
horizon scans could be refined by repeating these scans at regular intervals (e.g. 
5–10 years). The resulting watchlist will be used for consideration for ‘injurious 
wildlife’ listing, with the associated species risk-screening reports providing baseline 
information with which to conduct comprehensive risk assessments for the high-
est-risk species. The lack of available information for several species, which resulted 
in an a priori classification of ‘non-invasive’, particularly ornamental fish species, 
emerged as a potential limitation for predicting impacts to the risk assessment area, 
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and thus, may be a potential barrier for future scans when informing downstream 
management decisions.

In combination with other horizon scanning studies carried out in adjacent 
regions (e.g. Lieurance et al. in press) and with multi-state level coordination, the 
present study could facilitate a joined-up, regional approach across the northern 
Gulf of Mexico to address harmful marine invasive species before they arrive. In 
the same manner that horizon scanning applications elsewhere have endeavored to 
identify potential future invaders from neighboring countries to inform cross-bor-
der cooperation in non-native species management (e.g. Glamuzina et al. 2017; 
Dodd et al. 2019, 2022; Wei et al. 2021; Mumladze et al. 2022), the results of 
the present study are likely to prove useful at an international level, specifically for 
neighboring countries and Caribbean islands (e.g. Tidbury et al. 2021).
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